
Inorganica Chimica Acta, 118 (1986) L41-L42 L41 

Pyrolysis of Mercuric Bromo-4-methoxybenzoates - 
Unexpected, High Yield Synthesis of Bis(2,5di- 
bromo-4methoxyphenyl)mercury 

meta mercuration on thermal decomposition (reac- 
tion (1) R = 3-Br-4-MeOC,Hs). 
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The two principal reactions observed on thermal 
decomposition of mercuric arenecarboxylates are 
mercuration of the aromatic ring and decarboxylation 
(ipso-mercuration) [ 11. In general the latter is favored 
by electron-withdrawing substituents in the organic 
group since these both deactivate the ring towards 
mercuration (electrophilic aromatic substitution [2]) 
and facilitate decarboxylation by an Sni mechanism 
with carbanionic character in the transition state. 
The conditions also affect the balance between the 
decomposition paths. Thus, heating mercuric 2,6- 
dihalogenobenzoates under vacuum gives mainly 
3-mercurated-2,6-dihalogenobenzoate groups and the 
2,6dihalogenobenzoic acid due to mercuration, 
by contrast with the occurrence of decarboxylation 
in boiling pyridine or dimethyl sulphoxide [3]. 
As part of a continuing study of the factors favoring 
each path we have examined pyrolysis of four 
mercuric bromo-4-methoxybenzoates under vacuum 
and report that the 2,5-dibromo-4-methoxybenzoate 
undergoes smooth decarboxylation whereas ortho 
mercuration would be expected on the basis of the 
current understanding [ 1 ] of these decompositions. 

From mercuration of 4-methoxybenzoic acid 
under varying conditions and bromodemercuration 
of the mercuration products, 3-bromo-4-methoxy- 
2,5-dibromo-4-methoxy-, 3,5-dibromo-4-methoxy- 
and 2,3,5-tribromo-4-methoxy-benzoic acids have 
been prepared [4]. Their mercuric salts are readily 
prepared from mercuric acetate and the carboxylic 
acids in boiling methanol or aqueous methanol, 
and were obtained analytically pure except for the 
2,3,5-tribromo-4-methoxybenzoate which contained 
a small amount of the decarboxylation product, 
bis(2,3,5-tribromo-4-methoxyphenyl)mercury. 

On heating mercuric 3-bromo-4-methoxybenzoate 
under vacuum (190 “C, 6 h or 220 ‘C, 40 min), 
3-bromo-4-methoxybenzoic acid was slowly evolved 
and an involatile mercuration product was obtained. 
Bromodemercuration of the latter with tribromide 
ions gave a mixture of 2,5-dibromo- and 3,5-di- 
bromo-4-methoxybenzoic acids (4: 1) (and a trace of 
2,3,5-tribromo-4-methoxybenzoic acid). This is indic- 
ative of predominant ortho mercuration and some 

Similarly, mercuric 3,5-dibromo-4-methoxybenzoate 
at 225 “C for 4 h under vacuum gave 3,5-dibromo-4- 
methoxybenzoic acid and 2-mercurio-3,5-dibromo- 
4-methoxybenzoate (reaction (2) R = 3,5-Br2-4- 
MeO&H,). 

. 

Hg(02CWp - RCOOH + (2) 

The identity of the latter was established by forma- 
tion of 2,3,5-tribromo-4-methoxybenzoic acid on 
bromodemercuration. Blank reactions established 
that 3-bromo-4-methoxy-, 2,5-dibromo-4-methoxy- 
and 3,5-dibromo-4-methoxy-benzoic acids are not 
significantly brominated under the bromodemercura- 
tion conditions. 

By contrast with these examples of mercuration 
(predominantly ortho in the case of reaction (1)) 
heating mercuric 2,5-dibromo-4-methoxy-benzoate 
under vacuum (220 “C, 1 h) resulted in smooth de- 
carboxylation, and gave bis(2,5-dibromo-4-methoxy- 
phenyl)mercury as a sublimate in near quantitative 
yield (reaction (3) R = 2, 5-Br,-4-MeOC6H,). 

Hg(02CR), --+ RzHg + 2C02 (3) 

Crystallization from toluene/petroleum ether gave 
analytically pure crystals, m.p. 290 “C. Identification 
was supported by a parent ion in the mass spectrum 
and by the ‘H NMR spectrum (in (CDs)$O): 3.85, s, 
6H, OMe; 7.30, s, with satellites 4Jrr.s, H3 36Hz, 2H, 
H3; 7.76, s, with satellites 3Jr.r,_ n6 116Hz, 2H, H6. 
The coupling constants are characteristic of those 
expected for mercury coupled to the meta and 
ortho protons, respectively, of a diarylmercurial 
[ 5,6]. Bromodemercuration gave 2,4,5-tribromo- 
anisole as the sole product. 

The surprising nature of reaction (3) was further 
illustrated when decomposition of mercuric 2,3,5- 
tribromo-4-methoxybenzoate under vacuum (at 200 

*Drawn as polymers rather than in the cyclic anhydride 
form because of the preference of mercury for linear two 
coordination. 
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‘C, 20 min or 180 “C, 3 h) gave some 2,3,5-tribromo- 
4-methoxybenzoic acid and a mixture of decarboxy- 
lation and mercuration products. These were shown 
by cleavage with tribromide and triiodide ions and 
hydrogen bromide to contain bis(2,3,5tribromo4- 
methoxyphenyl)mercury, 6-mercurated-2,3,5-tri- 
bromo-4-methoxybenzoate groups and 2,3,6-M 
bromo4,5-dimercurioanisole. 

At this stage, a mechanistic rationalization for 
reaction (3) cannot be given. The failure of the 
2,3,5-tribromo-4-methoxybenzoate to undergo de- 
carboxylation regiospecifically [by contrast with 
(3)] rules out an Sni mechanism where the transition 
state has some carbanionic character, as this is pro- 
moted by increasing the number of inductively 
electron-withdrawing substituents [ 11. Although 
multiple methoxy substituents in the organic group 
can promote facile decarboxylation by a different 
mechanism, classical electrophilic aromatic ipso- 
substitution [7, 81, it is apparent that one methoxy 
group cannot have this effect (reactions (1) and (2) 
see also pyrolysis of mercuric 4-methoxybenzoate 
[8,9]). Radical decarboxylation, well known as a 
route to monoorganomercurials [cf: reaction (3)] 
by irradiation or peroxide induced decomposition 
of mercuric carboxylates in organic solvents [ 11, 
cannot be conclusively ruled out but is perhaps 
inconsistent with the very clean nature of reaction 
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(3) and with substituent effects normally observed 
for radical decarboxylation of mercuric arenecar- 
boxylates [lo]. 
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